Homework 4

A. Chorin

February 20, 2005

Due Feb. 23.

- 1. Consider the partial differential equation $u_t = u_x$, with initial data $u(x,0) = \phi(x)$. Solve it approximately as follows: put a grid on the (xt) plane, with mesh length h in the x-direction and k in the t-direction. Set $u_i^0 = \phi(ih)$. To calculate $u_{(i+1/2)h}^{(n+1/2)k}$ (half way between mesh points and half way up the time interval k) proceed as follows: pick a random number θ from the equidistibution density, one such choice for the whole half step. Set $u_{(i+1/2)h}^{(n+1/2)k} = u_i^n$ if $\theta \leq 1/2 k/(2h)$, $= u_{i+1}^n$ otherwise. The half-step from time (n+1/2)k to (n+1)k is similar. Show that if $k/h \leq 1$ the solution of this scheme converges to the solution of the differential equation as $h \to 0$ (This is a special case of the Glimm or random choice scheme). Hint: The solution of the differential equation is $\phi(x+t)$, i.e., initial values propagate along the lines t=-x+constant. Examine how the scheme propagates initial values: show that an initial value u_i^0 moves in a time t by an amount η , where η is a random variable whose mean tends to -t and whose variance tends to 0.
- 2. Consider the heat equation $v_t = (1/2)v_{xx}$ with initial data $v(x,0) = \phi(x)$ for $0 \le x \le 1$ and boundary conditions v(0,t) = a and v(1,t) = b. Show that the solution at the point, v(x,t), can be obtained by starting BM's from (x,t) backward in time, attaching to each BM a number F as follows: If the BM first hits the portion of the x-axis between the boundaries x = 0, x = 1, then $F = \phi(x + w(\omega, t))$; if it first hits the boundary x = 0 then F = a, and similarly at x = 1; finally, v(x,t) = E[F].

Hint: One way is to go through a finite-difference argument, and then assume that the random walks converge to a BM.

- 3. Evaluate exactly $\int F dW$ for the following functionals F: (i) $F[w(\cdot)] = \int_0^1 w^4(s) ds$; (ii) $F = \sin(w^3(1))$.
- 4. Write the solution of the partial differential equation $v_t = (1/2)v_{xx} xv$, with data $v(x,0) = \sin x$, as a Wiener integral.
- 5. Evaluate $\int F dW$, where $F[w(\cdot)] = e^{-\int_0^1 w^2(s)ds} \cos(w(1))$ by Monte-Carlo, as follows: Divide the time interval [0,1] into n pieces; Construct random walks w_n as follows: For t a multiple of 1/n, set $w_n((i+1)h) = w_n(ih) + q$, where q is a Gaussian variable with mean 0 and variance 1/n (

and of course $w_n(0) = 0$). For t between the multiples of 1/n construct w_n by linear interpolation. For each such w_n evaluate F and average over many walks, until the error (as measured by the difference between runs and also by a numerical estimate of the ds) is less than 1 per cent. Do this for n = 5 and n = 10. Note that this integral is the solution at (0, 1) of some initial value problem for a differential equation. What is this problem?